Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE

Flat-plate heat exchangers enable cool, reliable mining

By Ken Korane | July 23, 2020

Share

Mining machines and equipment face tough and unforgiving operating conditions, and the hydraulic systems they rely on have to stand up to the abuse and, in some cases, extreme heat. Facing a unique combination of challenges, a mineral-processing OEM approached GS Global Resources, Mukwonago, Wisc., for engineering assistance while designing a massive 3,300-hp rock crusher, reportedly the largest open-pit cone crusher in the world.

Engineers at GS Global Resources developed a unique flat-plate heat exchanger to cool hydraulics in a mining application.

Engineers at GS Global Resources developed a unique flat-plate heat exchanger to cool hydraulics in a mining application.

Hydraulic cone crushers feed raw material between two cone-shaped structures, one nested inside the other. Hydraulic actuators apply pressure to the two opposing cones, which rotate and stroke to efficiently pulverize rock and ensure high production rates.

Aside from its considerable size, the cone crusher would also be located in Zambia, posing multiple environmental issues including high ambient temperatures and an extremely caustic water supply. Due to the hot climate, large air coolers traditionally used in this application could not effectively remove heat from the oil.

That’s a problem for several reasons. Excessive heat reduces oil viscosity, which lowers the fluid’s ability to lubricate components and, in turn, induces surface wear and speeds failure. Heat also accelerates oxidation and breaks down additives which protect the entire system, and leads to the formation of sludge, varnish and other contaminants. High fluid system temperatures can also prematurely break down seals and other plastic components.

As an alternative method to reduce temperatures, this OEM would normally turn to shell-and-tube water coolers. However, to be fully effective, this application would require twelve 10-in. shell-and-tube heat exchangers, which would have led to an incredibly large footprint. GSGR was tasked with developing a different, more-efficient cooling method that could handle this unique set of environmental concerns.

The GSGR engineering team proposed installing flat-plate heat exchangers, a cooling technology that had yet to be used in the mining industry. Because this type of unit offers more flexibility than shell-and-tube systems in terms of the amount of heat that can be extracted, it could be adjusted to work in extremely hot climates. One issue, however, was the pH of the local water supply. As the water used in this application was so caustic that it would eat away at the stainless steel plates typically used in this type of heat exchanger, titanium plates were substituted, which were durable enough for the local water supply.

To test the new design, GSGR engineers developed a complex procedure to recreate the environmental constraints and operational issues. They simulated the heat load of the rock crusher and ran oil to the cooler. The flat-plate heat exchanger was supplied with water heated to 93° F, which was 8° higher than the hottest estimated temperatures in the machine’s environment. This elaborate test set-up let technicians monitor water and oil temperature changes across the cooler and guarantee that this cooling technology would perform well on site.

As a result, the OEM was able to launch the system in the field with confidence that it could work efficiently even in temperatures beyond what was required. The manufacturer embraced the newer, more durable and compact technology, and has since incorporated it into four additional machines.

GS Global Resources
www.gsglobalresources.com


Filed Under: Sealing & Contamination Control Tips
Tagged With: gsglobal
 

Current Digital Issue

  Easier access to more of our content Every other month, readers of Fluid Power World have access to our beautiful print and digital editions, where we share a selection of the best fundamentals content, technology news, case studies, and technical articles that cover the gamut of hydraulics and pneumatics system design. But we only…

Subscribe!

Fluid Power World is written by engineers for engineers engaged in designing machines and or equipment in Off-Highway, Oil & Gas, Mining, Packaging, Industrial Applications, Agriculture, Construction, Forestry, Medical and Material Handling. Fluid Power World covers pneumatics, mobile hydraulics and industrial hydraulics.

Fluid Power Design Guides

fluid
“fpw
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Fluid Power Professionals.

RSS Featured White Papers

  • Moving fluid power forward
  • High-force linear motion: How to convert from hydraulic cylinders to electric actuators and why.
  • A technical comparison: Performance of pneumatic cylinders and electric rod actuators
Fluid Power World
  • Hose Assembly Tips
  • Mobile Hydraulic Tips
  • Pneumatic Tips
  • Sealing & Contamination Control Tips
  • About us
  • Contact Us

Copyright © 2024 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search Fluid Power World

  • Home
  • Technologies
    • Hydraulics
      • Cylinders & Actuators
      • Filtration/Contamination Control
      • Fittings, Couplings & Adapters
      • Fluids
      • Fluid Conditioning
      • Hose & Tubing
      • Pumps & Motors
      • Related Technologies
      • Sealing
      • Sensors & Gauges
      • Valves & Manifolds
    • Pneumatics
      • Air Preparation & Regulation
      • Compressed Air Technologies
      • Cylinders & Actuators
      • End Effectors & Grippers
      • Fittings, Couplings & Adapters
      • Hose & Tubing
      • Sensors
      • Vacuum
      • Valves & Manifolds
  • Engineering Basics
  • Trending
  • Resources
    • Digital Issues
    • Pneumatics Tech Toolbox
    • Podcasts
    • Subscribe to Fluid Power World Print Magazine
    • Videos
    • Webinars / Digital Events
    • White Papers
  • Women in Engineering
    • Women in Fluid Power
    • Women in Engineering
  • Design Guide Library
  • Classrooms
    • Pneumatics Classroom
  • SUBSCRIBE